Synaptic AMPA Receptor Exchange Maintains Bidirectional Plasticity

نویسندگان

  • Stefanie G. McCormack
  • Ruth L. Stornetta
  • J. Julius Zhu
چکیده

Activity-dependent synaptic delivery of GluR1-, GluR2L-, and GluR4-containing AMPA receptors (-Rs) and removal of GluR2-containing AMPA-Rs mediate synaptic potentiation and depression, respectively. The obvious puzzle is how synapses maintain the capacity for bidirectional plasticity if different AMPA-Rs are utilized for potentiation and depression. Here, we show that synaptic AMPA-R exchange is essential for maintaining the capacity for bidirectional plasticity. The exchange process consists of activity-independent synaptic removal of GluR1-, GluR2L-, or GluR4-containing AMPA-Rs and refilling with GluR2-containing AMPA-Rs at hippocampal and cortical synapses in vitro and in intact brains. In GluR1 and GluR2 knockout mice, initiation or completion of synaptic AMPA-R exchange is compromised, respectively. The complementary AMPA-R removal and refilling events in the exchange process ultimately maintain synaptic strength unchanged, but their long rate time constants ( approximately 15-18 hr) render transmission temporarily depressed in the middle of the exchange. These results suggest that the previously hypothesized "slot" proteins, rather than AMPA-Rs, code and maintain transmission efficacy at central synapses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bidirectional Synaptic Plasticity Regulated by Phosphorylation of Stargazin-like TARPs

Synaptic plasticity involves protein phosphorylation cascades that alter the density of AMPA-type glutamate receptors at excitatory synapses; however, the crucial phosphorylated substrates remain uncertain. Here, we show that the AMPA receptor-associated protein stargazin is quantitatively phosphorylated and that stargazin phosphorylation promotes synaptic trafficking of AMPA receptors. Synapti...

متن کامل

Calcium-Permeable AMPA Receptor Plasticity Is Mediated by Subunit-Specific Interactions with PICK1 and NSF

A recently described form of synaptic plasticity results in dynamic changes in the calcium permeability of synaptic AMPA receptors. Since the AMPA receptor GluR2 subunit confers calcium permeability, this plasticity is thought to occur through the dynamic exchange of synaptic GluR2-lacking and GluR2-containing receptors. To investigate the molecular mechanisms underlying this calcium-permeable ...

متن کامل

Glutamatergic Plasticity by Synaptic Delivery of GluR-Blong-Containing AMPA Receptors

Activity-driven delivery of AMPA receptors is proposed to mediate glutamatergic synaptic plasticity, both during development and learning. In hippocampal CA1 principal neurons, such trafficking is primarily mediated by the abundant GluR-A subunit. We now report a study of GluR-B(long), a C-terminal splice variant of the GluR-B subunit. GluR-B(long) synaptic delivery is regulated by two forms of...

متن کامل

An Essential Role for PICK1 in NMDA Receptor-Dependent Bidirectional Synaptic Plasticity

PICK1 is a calcium-sensing, PDZ domain-containing protein that interacts with GluR2 and GluR3 AMPA receptor (AMPAR) subunits and regulates their trafficking. Although PICK1 has been principally implicated in long-term depression (LTD), PICK1 overexpression in CA1 pyramidal neurons causes a CaMK- and PKC-dependent potentiation of AMPAR-mediated transmission and an increase in synaptic GluR2-lack...

متن کامل

Corticosterone Alters AMPAR Mobility and Facilitates Bidirectional Synaptic Plasticity

BACKGROUND The stress hormone corticosterone has the ability both to enhance and suppress synaptic plasticity and learning and memory processes. However, until today there is very little known about the molecular mechanism that underlies the bidirectional effects of stress and corticosteroid hormones on synaptic efficacy and learning and memory processes. In this study we investigate the relati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2006